4,258 research outputs found

    Predicting I/O performance in HPC using artificial neural networks

    Get PDF
    The prediction of file access times is an important part for the modeling of supercomputer's storage systems. These models can be used to develop analysis tools which support the users to integrate efficient I/O behavior. In this paper, we analyze and predict the access times of a Lustre file system from the client perspective. Therefore, we measure file access times in various test series and developed different models for predicting access times. The evaluation shows that in models utilizing artificial neural networks the average prediciton error is about 30% smaller than in linear models. A phenomenon in the distribution of file access times is of particular interest: File accesses with identical parameters show several typical access times.The typical access times usually differ by orders of magnitude and can be explained with a different processing of the file accesses in the storage system - an alternative I/O path. We investigate a method to automatically determine the alternative I/O path and quantify the significance of knowledge about the internal processing. It is shown that the prediction error is improved significantly with this approach

    Effekte von Kompostapplikationen auf Fußkrankheiten und Grünmasseertrag von Wintererbsen

    Get PDF
    Abstract: Effects of compost applications on foot diseases and biomass yield of winter peas. A field experiment was conducted to assess the effects of compost applications on the growth and health of winter peas from September 2009 to May 2010. A total of 5 t DM ha-1 of a 12 month old yard waste compost were applied in plots that were either uninoculated or inoculated with Phoma medicaginis grown on infested oat kernels. The control treatment received no compost and was left uninocu-lated. Main plots received all four treatments and were replicated four times. Compost slightly reduced the incidence of Mycosphaerella pinodes and Phoma medicaginis in March and the foot disease severity in May. Overall fresh matter production was significantly reduced by inoculation. These reductions were compensated by compost applications. There was great variation among main plots in the performance of the peas. Where peas performed poorly in the controls (i.e. low fresh matter yield) com-posts improved the performance considerably. Where performance was high, there were no more additional benefits of adding compost to the system

    Treatment with higher dosages of heart failure medication is associated with improved outcome following cardiac resynchronization therapy

    Get PDF
    Background Cardiac resynchronization therapy (CRT) is associated with improved morbidity and mortality in patients with chronic heart failure (CHF) on optimal medical therapy. The impact of CHF medication optimization following CRT, however, has never been comprehensively evaluated. In the current study, we therefore investigated the effect of CHF medication dosage on morbidity and mortality in CHF patients after CRT implantation. Methods and results Chronic heart failure medication was assessed in 185 patients after CRT implantation. During an overall mean follow-up of 44.6 months, 83 patients experienced a primary endpoint (death, heart transplantation, assist device implantation, or hospitalization for CHF). Treatment with higher dosages of angiotensin-converting enzyme inhibitor (ACE-I) or angiotensin receptor blockers (ARBs) (P = 0.001) and beta-blockers (P < 0.001) as well as with lower dosages of loop diuretics (P < 0.001) was associated with a reduced risk for the primary combined endpoint as well as for all-cause mortality. Echocardiographic super-responders to CRT were treated with higher average dosages of ACE-I/ARBs (68.1 vs. 52.4%, P < 0.01) and beta-blockers (59 vs. 42.2%, P < 0.01). During follow-up, the average dosage of loop diuretics was decreased by 20% in super-responders, but increased by 30% in non-super-responders (P < 0.03). Conclusion The use of higher dosages of neurohormonal blockers and lower dosages of diuretics is associated with reduced morbidity and mortality following CRT implantation. Our data imply a beneficial effect of increasing neurohormonal blockade whenever possible following CRT implantatio

    Exploiting Locally Imposed Anisotropies in (Ga,Mn)As: a Non-volatile Memory Device

    Full text link
    Progress in (Ga,Mn)As lithography has recently allowed us to realize structures where unique magnetic anisotropy properties can be imposed locally in various regions of a given device. We make use of this technology to fabricate a device in which we study transport through a constriction separating two regions whose magnetization direction differs by 90 degrees. We find that the resistance of the constriction depends on the flow of the magnetic field lines in the constriction region and demonstrate that such a structure constitutes a non-volatile memory device

    Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale

    Get PDF
    Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean

    Symplectic structure of N=1 supergravity with anomalies and Chern-Simons terms

    Full text link
    The general actions of matter-coupled N=1 supergravity have Peccei-Quinn terms that may violate gauge and supersymmetry invariance. In addition, N=1 supergravity with vector multiplets may also contain generalized Chern-Simons terms. These have often been neglected in the literature despite their importance for gauge and supersymmetry invariance. We clarify the interplay of Peccei-Quinn terms, generalized Chern-Simons terms and quantum anomalies in the context of N=1 supergravity and exhibit conditions that have to be satisfied for their mutual consistency. This extension of the previously known N=1 matter-coupled supergravity actions follows naturally from the embedding of the gauge group into the group of symplectic duality transformations. Our results regarding this extension provide the supersymmetric framework for studies of string compactifications with axionic shift symmetries, generalized Chern-Simons terms and quantum anomalies.Comment: 27 pages; v2: typos corrected; version to be published in Class.Quantum Gra

    Borane adducts of punicine and of its dehydroxy derivatives (pyridinium-1-yl)-2-and 3-phenolates

    Get PDF
    The natural product punicine (Punica granatum) exists in two tautomeric forms, the cross-conjugated mesomeric betaine 1-(pyridinium-1-yl)-2-hydroxy-phenyl-5-olate and the conjugated mesomeric betaine 1-(pyridinium-1-yl)-5-hydroxy-phenyl-2-olate. Punicine as well as its picoline derivatives reacted with tris(pentafluorophenyl)borane exclusively at the 2'-olate group to form zwitterionic borates. Correspondingly, the 5'-dehydroxy derivate of punicine, the conjugated heterocyclic mesomeric betaine 1-(pyridinium-1-yl)-phenyl-2-olate and its picoline derivatives also gave borates, whereas analogous reactions of the cross-conjugated isomer 2'-dehydroxypunicine [1-(pyridinium-1-yl)-phenyl-3-olatel did not result in the formation of stable adducts. (C) 2020 Elsevier Ltd. All rights reserved.Peer reviewe

    Electronic structure of superposition states in flux qubits

    Full text link
    Flux qubits, small superconducting loops interrupted by Josephson junctions, are successful realizations of quantum coherence for macroscopic variables. Superconductivity in these loops is carried by 106\sim 10^6 -- 101010^{10} electrons, which has been interpreted as suggesting that coherent superpositions of such current states are macroscopic superpositions analogous to Schr\"odinger's cat. We provide a full microscopic analysis of such qubits, from which the macroscopic quantum description can be derived. This reveals that the number of microscopic constituents participating in superposition states for experimentally accessible flux qubits is surprisingly but not trivially small. The combination of this relatively small size with large differences between macroscopic observables in the two branches is seen to result from the Fermi statistics of the electrons and the large disparity between the values of superfluid and Fermi velocity in these systems.Comment: Minor cosmetic changes. Published version
    corecore